extension | φ:Q→Aut N | d | ρ | Label | ID |
C32:1(S3xC8) = C32:C6:C8 | φ: S3xC8/C4 → D6 ⊆ Aut C32 | 72 | 6 | C3^2:1(S3xC8) | 432,76 |
C32:2(S3xC8) = C12.89S32 | φ: S3xC8/C4 → D6 ⊆ Aut C32 | 72 | 6 | C3^2:2(S3xC8) | 432,81 |
C32:3(S3xC8) = S3xF9 | φ: S3xC8/S3 → C8 ⊆ Aut C32 | 24 | 16+ | C3^2:3(S3xC8) | 432,736 |
C32:4(S3xC8) = C8xC32:C6 | φ: S3xC8/C8 → S3 ⊆ Aut C32 | 72 | 6 | C3^2:4(S3xC8) | 432,115 |
C32:5(S3xC8) = C8xHe3:C2 | φ: S3xC8/C8 → S3 ⊆ Aut C32 | 72 | 3 | C3^2:5(S3xC8) | 432,173 |
C32:6(S3xC8) = C33:5(C2xC8) | φ: S3xC8/Dic3 → C4 ⊆ Aut C32 | 24 | 8+ | C3^2:6(S3xC8) | 432,571 |
C32:7(S3xC8) = C3:S3xC3:C8 | φ: S3xC8/C12 → C22 ⊆ Aut C32 | 144 | | C3^2:7(S3xC8) | 432,431 |
C32:8(S3xC8) = C12.69S32 | φ: S3xC8/C12 → C22 ⊆ Aut C32 | 72 | | C3^2:8(S3xC8) | 432,432 |
C32:9(S3xC8) = C12.93S32 | φ: S3xC8/C12 → C22 ⊆ Aut C32 | 48 | 4 | C3^2:9(S3xC8) | 432,455 |
C32:10(S3xC8) = S3xC32:2C8 | φ: S3xC8/D6 → C4 ⊆ Aut C32 | 48 | 8- | C3^2:10(S3xC8) | 432,570 |
C32:11(S3xC8) = C3xC12.29D6 | φ: S3xC8/C3:C8 → C2 ⊆ Aut C32 | 48 | 4 | C3^2:11(S3xC8) | 432,415 |
C32:12(S3xC8) = C3:S3xC24 | φ: S3xC8/C24 → C2 ⊆ Aut C32 | 144 | | C3^2:12(S3xC8) | 432,480 |
C32:13(S3xC8) = C8xC33:C2 | φ: S3xC8/C24 → C2 ⊆ Aut C32 | 216 | | C3^2:13(S3xC8) | 432,496 |
C32:14(S3xC8) = C3xS3xC3:C8 | φ: S3xC8/C4xS3 → C2 ⊆ Aut C32 | 48 | 4 | C3^2:14(S3xC8) | 432,414 |
C32:15(S3xC8) = S3xC32:4C8 | φ: S3xC8/C4xS3 → C2 ⊆ Aut C32 | 144 | | C3^2:15(S3xC8) | 432,430 |